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When experimenting with long chain polymers 
it is desirable to use molecules which are all com
posed of the same number of monomeric elements. 
Since such a homogeneous system is difficult to 
prepare, one must often be satisfied with more or 
less heterogeneous mixtures. An indication of the 
molecular size distribution of this type of system 
can be obtained by applying statistical methods 
to the various molecular weights that can be de
termined experimentally. 

If a long chain molecule in a system of N similar 
polymers consists of p monomeric elements or 
fundamental units (for example, the monomeric 
elements in cellulose are glucose units), it will be 
a p-mer and its molecular weight will be denoted 
by Mp- Letting np be the fraction of p-mers in 
the system and m the molecular weight of a mono
meric element, NnP is the total number of p-meis 
and Mt = mp. Now any experimental method 
(such as chemical analysis, vapor or osmotic pres
sure measurements) which in effect involves the 
counting of molecules, measures the "number 
average" molecular weight 

M' = Ep 1^V EP
M* M 

The average value resulting from a procedure de
pending on weights of the molecules (e. g., Stau-
dinger's viscosity method) is given by the "weight 
average" molecular weight: 

M2 = "Z9MIn,/J^MrpP (2) 

Sedimentation equilibrium measurements in an 
ultracentrifuge make available the "z-average" 
molecular weight1 

M3 = ZpMlnp/ZpM
2
Pnp (3) 

It is now apparent from (1), (2) and (3) that the 
moments of the distribution function, nP, the i-th 
of which is 

« = ZPPinp (4) 
* Sterling Research Fellow, Yale University. 
(1) See Kraemer's article on polydisperse systems in "The Ultra-

centrifuge," edited by Svedberg and Pedersen, Oxford Press (1940); 
or Lansing and Kraemer, THIS JOURNAL, 57, 1369 (1935). 

can be expressed in terms of the M/s 

Mi = S^X _ m Z>* . m j ^ (5) 
E^ - S ZPP'~\ «-i 

or, since 

Ew» • l 

ixi = M i M 2 . . . Mv/m' (6) 

In a polydisperse system in which the molecular 
size distribution has a single maximum, this dis
tribution might be almost normal. As has been 
discussed by Lansing and Kraemer,1 a logarith
mically normal distribution function is applicable 
when there is reason to believe that a strong de
viation toward the high molecular weight compo
nents exists. Since only two moments are re
quired to calculate normal and logarithmically 
normal distribution functions, they do not make 
use of all the possible experimental information. 
We will now proceed to derive a distribution func
tion which involves all the measurable moments, 
and then we will develop a theory of depolymeriza
tion of polydisperse systems with arbitrary initial 
distributions. 

Almost Normal Molecular Size Distributions. 
—The fraction of p-mers in a system with a 
normal distribution2 of molecular sizes is 

n„{p) = e-bv-tW^'/o-V^r (7) 

where HI is the average degree of polymerization 
or first moment of the distribution and <r2 is the 
mean deviation, ^2 — Mi- Since any continuous 

CD 

function, f{p), such that f \f(p) 12dp < 03, can be 
— CO 

expanded as a product of a Gaussian error func
tion (7) and a linear combination of Hermite poly
nomials, an almost normal distribution function 
can be written 

co . 

np = T1 CnU0(P)HA ^ - ^ ) (8) 
« - 0 \ <r / 

(2) The treatment for logarithmically normal distributions similar 
to those of Lansing and Kraemer1 but involving three observable 
moments proceeds in a similar manner. See, for example, A. 
Fisher, "The Mathematical Theory of Probabilities," New York, 
N. Y., 1926, p. 235. 
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The first few Hermite polynomials are 

Ho(z) = 1 
H1(Z) = Z 
Hi(z) = z2 - 1 
H3(z) = z3 - Zz 

and all these polynomials satisfy the ortho normal
ization condition 

1 * 
—7== f H„(z)Hm(z)e-°'/!dz = \/n\'m\S,im (9a) 
V 2 ^ - co 

bnm = \\im = n and zero otherwise. Substitut
ing z = (/I1 - p)/am (9a): 

/ H.(^*)Hm(^l)n,(p) dp = V n ^ ! «„„ 

(9b) 

Thus multiplication of both sides of (8) by Hm-

IVi — p\ 
I Jdp and integration from p = — <» to 

/» = + °° yields the constants 

w!c„ = f npHm\^-^\dp (10) 
— CO ^ ' 

To translate the c's into experimental moments 
and average molecular weights we proceed as 
follows 

Cv = ^f H0npdp = J* npdp = 1 
— co — co 

r /Ml — P\ , , Mi—Mi n 

" - y ^ - ; » > < * = - — = ° 

— CO x ' 

2,2 = s [(*~:-*y - I]»M = - ^ - - j =« 

3IfI = s a - *M+?**> _ r _ ?«+3A 
•^ \ C T 3 CT'' o"1 o"1

 IT a I 
— CO v ' 

= _ ^Ma ~ 3|LilM2 + IH 

Using these values for C1, t2 and C3 and abbreviating 
X3 = 2^i — 3/Ui/U2 + Ms. »# becomes 

e-(v-py/2o* , x /,u, - p\ 1 
(11) 

Although it is possible in principle to determine 
moments higher than the third from ultracentri-
fuge analysis the errors would accumulate rapidly, 
so it would be advisable to cut off the expansion 
with the third Hermite polynomial; however, un
less a system deviates radically from a normal 
one, (11) should be quite accurate. Actually the 
experimental moments m = MiM 2 . . M.Jm' are 
sums, while the /x,'s in equation (11) are integrals. 
But, inasmuch as the number of molecules to be 
averaged over is large, and since it is difficult to 

differentiate experimentally between a molecule 
of say 300 monomeric elements and one of 301, 
the error introduced by replacing the sums by 
integrals is not large. The introduction of the 
various average molecular weights makes 

e-f.W,/m-#)V2<r!i X3 ,(VLiIm - p\ , I 
n = _ _ j \ _ - / / — ! c-1 -X-... • 

«V2T I 3V'1 V O- ) ^ \ 

(Yl) 
a2 = M1(M2 - M1)Im-' 
X3 = M,(2M'f - 3M1M2 + M2M3)Zw3 

Physically, a- gives an indication of the sharpness 
of the distribution in such a way that as <r in
creases, the distribution curve broadens, while the 
skewness or deviation from normal is indicated by 
X3 so tha t as X3 — > 0 the curve approaches a nor
mal one. When X3 is negative, molecular sizes 
smaller than the most probable ones predominate 
over those less than the most probable, and vice 
versa for positive <r3. In Fig. 1 are plotted three 
distribution functions for systems with number 
average molecular weights Mi = 35Ow and weight 
average molecular weights M 2 = 354m. Curve 
(1) is the normal distribution which corresponds 
to X3 = 0. Curve (2) results from choosing a 2-
average molecular weight M 3 = 357w. This 
choice makes Xj/6o-8 = —0.359, the negativeness 
of which leads to a predomination of less than 
"most probable" molecular sizes. Curve (3) 
shows the long chain predomination tha t comes 
from choosing M 3 = 359m. Here X3/6cr3 = 
+0.430. The skewness is as delicate to small 
differences in M 3 as it is in Fig. 1 only when the 
M3 ' s are close to the value which makes the curve 
normal. 

Depolymerization of a Mixture of Long Poly
mers.—A complete investigation of the kinetics 
of decomposition of long chain molecules has two 
aspects: the time variation of the degree of de-
polymerization, and the distribution of various 
chain lengths at a given time for a given degree of 
depolymerizatiou and a given initial distribution 
of chain lengths. The size distribution aspect 
has recently been analyzed3 for a system in which: 
I. All initial molecules are of the same molecular 
weight. 2. The accessibility to reaction of a 
bond is independent of its position in a chain and 
independent of the length of its parent chain. 3. 
The bonds of all the chains in the mixture at any 
given time are equally accessible to reaction. 
The difficulty of preparation of uniform samples 

(3) Montroll and Simha, J. Chem. Phys., 8, 721 (1(140). Refer
ences to past work, experimental and theoretical, are s;iven in this 
paper. 
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for depolymerization makes it desirable to elimi
nate the first assumption; so, using the results of 
the last section we will now investigate the degra
dation of mixtures with an arbitrary initial dis
tribution and especially those whose initial dis
tribution is almost normal. 

If an initial material is homogeneous the de
polymerization process can be studied by first 
developing a theory of the breaking of single mole
cules and then taking into account the distribu
tion of breaks in the various chains. In such a 
manner it has been shown3 that if a, the degree 
of depolymerization, is defined as the probability 
of a given bond being split [i. e., a is the ratio of 
the total number of bonds cut to the total number 
of bonds in the system), the average fraction of 
monomeric elements existing as components of 
^-mers in a system that was originally composed 
of N(p + l)-mers is 

F<(P. <*) = ' " f i l " ' I2 + (P ~ ' ) " ] ' ( < P <13a) 
P T t 

Ft + l{p, a) = (1 - a)" 

Since the total number of ^-mers, Nt(p, a), is given 
by 

N1(P, a) = NF1(P, a)(l + P)It 

(13a) implies 
Nt(p, a) = Na(I -a)'-1 [2 + (p -t)a],t <. p (13b) 
Np+i(p, Oi) = JV(I - a)" 

Now consider the depolymerization of a system 
that initially consisted of N polymers distributed 
into Ntit monomers, Nn2 dimers, . . , Nn p p-mers, 
. . , in such a manner that conditions (2) and 
(3) remain valid throughout the degradation 
process. The total number of t-mtrs, N,(a), 
when the degree of depolymerization is a, is the 
totality of t-mers generated from each of the 
original molecular species composed of t or more 
monomers. Thus 

N,(a) = £ N1(P, a) 
* + !-=< 

= Nn, (1 - a ) ' " 1 + 

(14) 

N £ np+ia(l - a ) ' ~ l [ 2 +(P- t)a] 

Let us assume that the initial material has an ar
bitrary size distribution in which the fraction of p-
mers is 

o - V 7 ^ 
E CiH, ( ^ i ? ) (15) 

j - o 

N,(a) = n,N&-l + 

2 ^ T = - [2 + a(w - t) ] Y, Ci f e-*°/> Hi(Z)Az 
V2ir ,- = 0 j = 0 eo 

In an almost normal distribution 

300 350 400 

P-
Fig. 1.—Three types of molecular size distributions 

Since, as one can show by integration by parts4 

/.«-*'•*-VIt1 + * (71)] 
A 

f ze-W'dz = - e - . i ' / s 
— CO 

A 
f H3(z) e-z'/'dz = (1 - , 4 2 ) e - - t 2 A = - H2(A)B-*1/* 

— CO 

A 
fzH%(z) e-*>/- ds = - A3 e~*lh, 

we h a v e 

N,(a) = Nn1St-* + 

I S r " - '»-'>'!V![1+*("tr)] + 

•|-."-(-^)'-("-"v"1 + 

\(^)'\ „7, 
aV/V/S'-l \ 

V 2 x 3!<r»V 

(4) * (* ) 1Cl*. For * < < 1: 

F o r « » l : f [1 - * (* ) ] - T 5 - ( I - 3 5 + ^ i - ••>• ~ 2 ^ 

T h e n if we let 1 — a = (S and (/ui — />)/c = 2 
Tables of these functions exist in Jahnke--Emde, "Funktiontafeln," 
Leipzig, 1933, p. US. 
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For a given a, the fraction of monomeric elements 
existing as components of ii-mers can be found by 
substituting (17) into 

* Nt(a) _ t N,(a) 
FtM = 

N £ pnP
 N™ (18) 

Average Molecular Weights of the Degraded 
Material.—The formulas for the distribution of 
molecular sizes of degraded material that we 
have derived so far are functions of the initial dis
tribution and the degree of depolymerization, a. 
In most problems it would seem that this form of a 
result is of little value because one usually cannot 
measure a directly. However, when it is possible 
to determine any one of the average molecular 
weights of the partially depolymerized system, a 
can be found as a function of that average mo
lecular weight, and then the history of the reac
tion can be followed by making molecular weight 
observations at various stages of the degradation 
process. 

The relationship between "number average" 
molecular weight, M*, and a is immediately ap
parent from the definition of M*, for M%/m = 
average number of monomeric elements in a chain, 
that is 

M* = 
Total number of monomeric elements in the system 

Total number of molecules in the system 

Since the total number of monomeric elements is 
conserved during the reaction (*. e., bonds internal 
in monomeric elements remain intact and only 
bonds connecting monomeric elements are split) 
the total number at any time is the same as that 
in the initial material; that is, ~^pnt = nx. Now 
the number of bonds in a (p + l)-mer is p, thus 
the number of molecules whose source was (p + I)-
mers is (1 + ap)tip^.i, and the total number of 
molecules in a system with the degree of depoly
merization a is XXl + ap)nt+1 = 5Zf(I ~~ a ) + 
a(p + l)]nt+1 = 1 — OL + am- Therefore 

M*/m = MI/H + ct(Mi - I)] (19) 

In an initially homogeneous distribution with 
Hi = P+ I 

M* Im = (p + 1)1(1 + ap) 

which checks with the corresponding formula de
rived in reference 3. 

To calculate the "weight average" molecular 
weight, MZ, at high degrees of depolymeriza
tion, we make the following observations. In the 
case of a system in which all initial molecules are 

(p + l)-mers, when a and p are sufficiently large 
so that3 (1 - a)* < < a(p + 1) 

MJm ~ 1 + 2(1 - a)[a(l + p) - l ] /a2(l + P) 
= 1 + 2(1 - a)/a - 2(1 - a)/a»(l + P) 

1 + 2/a 

Suppose p is about 200. If a is as little as 0.2 

2/a - 1 = 9 » 2(1 - a)/a2(l + p) = 1.6/8 = 0.2 

Thus with initial chain lengths > 200, and a > 
0.2, M*/m is independent of the initial chain 
length. This means, when a system with mole
cules of various degrees of polymerization > 200 
is depolymerized until a > 0.2, M^/m becomes 
independent of the initial distribution and 

MtIm 1 + 2/a (a> 0.2) (20) 

the next approximation being obtainable by sub
tracting 2(1 — a)/a2m-

At low degrees of depolymerization the corre
sponding derivation is more complicated because 
one must evaluate directly 

using the expression for N1 given in equation (17). 
The value of YJ t2Nt/N is calculated in the appen
dix (iii) and its substitution in (21) yields 

M*Jm = 

«Mi(2 - a) - 2(1 - a)( 1 - f ) M1(I - a)'J A l * 8 

(22) 

When nt = 1 if t = p + 1 and zero otherwise, m 
= p + 1 and 

m = 
m 

a2(l +P)+ 2(1 - a) [(I - a)?+1 - 1 + « (P + I)] 
aKP + D 

which agrees with the formula for the weight 
average molecular weight of an initially uniform 
system.3 

In an almost normal initial distribution 

Ml = 1 i 
m Mia2Y 

2(1 - a) 

ajui(2 — a) 

1 - 2 (1 - a) •(w-<)A' 
(1 

a y/2~i 

fcM*^)]} (23) 

Application of equation (ix) of the appendix sim
plifies this to 

MA _ (2 - a) _ 2(i - a) J1 + r 1 
m a Mia2 ! L 1 + 



May, 1941 MOLECULAR SIZE DISTRIBUTION IN POLYDISPERSE SYSTEMS 1219 

| j log* (1 - a ) ] exp. [ J log' (1 - a) + 

Ml log(l — a) 

As a — > 0, log (1 — a) *~ — a, and 

M S _ , ( 2 - q ) 2 ( 1 - « ) I 1 + Z 1 . 
Wt a Ml a 2 ( \ 

I a ' J exp. ( -Mia + - jp -J 

(24) 

(25) 

Using equation (19) or (23) one can determine 
a. from a measured average molecular weight (as 
discussed in reference 3, p. 724, when M* is the 
measurable variable, a is most easily found by 
graphical means) and substitution of the a value 
into (17) or (18) indicates the molecular size dis
tribution. Figure 2 shows the degradation curves 
of an initially normal molecular size distribution 
and emphasizes the transition from one sharp 
distribution to another. 

A method to decide whether a given reaction 
proceeds with random splitting of bonds as dis
cussed in this paper would be to measure both 
M% and M% at various stages of degradation, 
and then compare the measured M% values with 
those calculated from (23) using the a values de
rived from (19). 

Time Dependence of a.—To express the time 
dependence of a we shall make the assumption 
that throughout the depolymerization process the 
rate at which bonds are broken is proportional to 
the number of uncut bonds.6 In this case dB/dt 
= — XB, if B is the number of uncut bonds at time 
/ and X is a degradation constant. Thus 

B(t) = Ne-u (MI - D (26) 

since the total number of bonds in the unde-
graded system (t = 0) is NY nP{p - 1) = N(m — 
1). Now the total number of bonds split at the 
end of time t is 

B(O) - B(t) = NQi1 - I)(I - e-M) 

Therefore 

• - " - ^ " - - y 0 - - • - *> 
The degradation constant, X, for a given reaction 
can be evaluated by observing average molecular 
weights at various times, finding the corre
sponding a's from (19) or (22), and applying 

X = - (1/0 log (1 - a) 

One can express the size distribution or average 
molecular weights of a partially degraded system 
as a function of the time by substituting (27) in 

(o) A similar discussion of this problem has been made by W. 
Kuhn. Ber., 63, 1503 (1930). 

(14), (19), etc. Some other aspects of the kinetics 
of depolymerization, such as the probability of a 
given number of bonds being broken in a given 
time, follow immediately from the solutions of the 
corresponding problems in the theory of radio
active disintegrations.6 
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Fig. 2.—Fraction of monomeric elements existing as 
components of i-mers for various a's in a system that 
originally had a normal distribution of molecular sizes 
(MI = 350 and Mi/m = 353). 

Appendix 

Calculation of X)Ai t3 NJN and Weight Average Mo
lecular Weights.—From equation (14), if (1 — a) = /S 

00 co 

(i) Y t2N,/N = E Pntp-i + 

Y Y ^aP-I [2 - (t + l)a + Pa] 
1 = 1 p = t + l 

but for any function f(p, t) (for which the following sums 
converge) 

Y Y M,t) = Y Y MA - E E Mn 
< - i # - « + i t=ip-i i - i j . i 

Interchanging the order of summation in the second term: 
OJ OO CO OO 

= Y Y M,t) - E E M,t) 
/ = i p = i p=it=p 

Thus 
03 CO 

(") E E tHpfi>{2 - (t + l)a + pa] = 
1=1P-t+l 

CO OO 

Y Y tVnp(2 - a - ta + pa) -
t = ip = l+l 

CO OD 

Y Y t*n»P [2 - U + D + pa] 
P=It-p 

00 GO 

Now Y nv = l '• Y Pnp = Mi. Using the fact that 
P = T. p=l 

.5"-(»s)\5'-(»s)"r?j 
(6) See, for example, Ruark and Devol. Phys. Rev., 49, p. 355 

(1936). 
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we have 
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(1 - PY \p* + 0( - 2p> + 

2p + 1) + /3̂ (1 py 
and 

0" Y /' 0> = (Y^ j j i l£3 + /3d + 3/. + 3£« -

3p3) + (3*(4 - dp2 + 3ps) + /33(1 - PY 

Substituting these expressions in (ii), and (ii) in (i) 

(iii) Y fNt/N = 

•i ( 2 - a)/a - 2 U - JT1 np0PJ(l - a)/a* 

For degrees of depolymerization sufficiently small to make 
(CKMI)2 much less than am 

Y np&* = Y «* (1 - ccp + Ct2P(P - D/2 - . . .) 
= 1 - am + a2(M2 - Mi)/2! - «3(w - 3M2 + 2M ,)/3! + . . . 

and 

(iv) f; t*N,/N~m+Ml -
t = \ 

a ) 6 i - O t 1 " §(M3 ~M,3-1 2 M 0 + o [ ( a w ) 2 ] ] 
So (iii) and (iv) imply 

<*(2 - <*)MI - 2(1 

(v) Mt 
x)l 1 2 n" 

and for very small a 

(vi) f-̂ fe-1)*1- + -
« ' ( M 3 — 3M2 + 2 M I ) 

3 <M2 — Ml) + 

Y nP&" = . / ,-= I 1 
/ i - i a \ / 2 i . 

L«i [, 

L e t t i n g c = Mi + <r2 log /3 a n d x — p — c 

CO 

(viii) = e i » » l o g * ( l - a ) +MiIOg(I-Ol 1 +. 

^logMl- <*)] 

Thus the weight average molecular weight of an initially 
almost normal system is 

(ix) 
Ml = (2 - a) _ 2(1 - a) j 1 + 

tn a /Ai a 

„- l o g 3 ( l - a j + MI tog (1 —a) 
[i +•!•>*'u - «)](• 

As , 

(x) 

—*• 0, log (1 — a) ^ —a, a n d 

¥A ^ 2 - « _ 2(1 - a) ) 
m a ma' 

1 + 

('-Jl-) exp. (-Mi« + « V / 2 ) 1 

Summary 

In a polydisperse system of long chain molecules 
of the same general structure with a single maxi
mum molecular size distribution, this distribu-
t'on will not deviate radically from a normal one. 
With this in mind a general distribution function 
(which shows deviations from normal) is derived 
in terms of three measurable average molecular 
weights. 

A theory of depolymerization of an arbitrary Replacement of the n's by the corresponding functions of 
average molecular weights describes MZ/m as a function d i s t r i b u t i o n of h i g h p o l y m e r s is d e v e l o p e d Stat is-
of the degree of depolymerization and of the initial average t i ca l ly u n d e r t h e a s s u m p t i o n t h a t all b o n d s con 

mo ecu ar weig ts. n e c t i n g m o n o m e r i c e l e m e n t s in t h e s y s t e m h a v e 
In an initially almost normal distribution .,. , , . , , ~ , 

t h e s a m e p r o b a b i l i t y of b e i n g b r o k e n . T h e 
(vii) Y npP" = Y 0P ~—*" / (l ~ m o l e c u l a r size d i s t r i b u t i o n a t a n y t i m e is g iven as 

0- V 2 T \ P-I P = I a func t ion of t h e in i t i a l d i s t r i b u t i o n a n d of t h e 

— H3 f Ml ~ P\ \ f r ac t ion of b o n d s sp l i t . 
3.<r3 \ & // U n d e r t h e a s s u m p t i o n t h a t t h e r a t e a t wh ich 

If a is small enough to make the use of this sum neces- b o n d s a r e c u t is p r o p o r t i o n a l t o t h e n u m b e r of u n -
sary, we can replace the summation operation by an inte- c u t b o n d s j n t h e s y s t e m > t h e t i m e d e p e n d e n c e of 
gration, and since exp. (— (MI — p)'/2<r2} >• 0 very ,, , , , . . .. . ,. , 

. . . , , „ / , . . , - • . *• . t h e deg ree of d e p o l y m e r i z a t i o n is d i scussed , 
rapidly as p becomes small, we can take the limits of inte- " r J 

gration as — °? and + =°. Therefore N E W HAVEN, CONN. RECEIVED JANUARY 4, 1941 


